Question Sheet 6, Differentiation I.

Verifying the Definition

In these questions we use the Limit Laws to verifying the definition

$$
\begin{equation*}
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} . \tag{1}
\end{equation*}
$$

We will also look at examples where the limit fails to exist so f is not differentiable at a, and where we have to look at both one-sided limits to show that the limit in (1) exists, or not.

1. Using the definition of the derivative as a limit, and not the differentiation rules, calculate the derivatives of the following functions.
i) $x^{4}, \quad x \in \mathbb{R}$
ii) $\sqrt{x}, x>0$
iii) $\frac{1}{1+x^{4}}, x \in \mathbb{R}$.
2. Recall the results from the Lecture Notes that

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \quad \text { and } \quad \lim _{x \rightarrow 0} \frac{\cos x-1}{x}=0 .
$$

Assume the addition formulae for cosine and tangent.
Prove, by verifying the definition that,
i)

$$
\frac{d}{d x} \cos =-\sin x
$$

for $x \in \mathbb{R}$,
ii)

$$
\frac{d}{d x} \tan x=\frac{1}{\cos ^{2} x}
$$

for $x \notin\left\{\frac{\pi}{2}+n \pi: n \in \mathbb{Z}\right\}$.
3. Recall the result from the Notes that

$$
\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1 .
$$

Use this, and the definition of derivative, to find the derivatives of
i) $e^{2 x}$
ii) $x e^{x}$.
iii) $\sinh x$.
4. Use the definition of derivative to find

$$
\frac{d}{d x}\left(e^{x} \sin x\right)
$$

for $x \in \mathbb{R}$.
(You may assume if necessary, that $\sin (a+h)=\sin a \cos h+\cos a \sin h$).
Hint Do not use the result but look at the proof of the Product Rule for differentiation and use the idea of "adding in zero".
5. i) Prove that $|\sin \theta|$ is not differentiable at $\theta=0$.
ii) Prove, by verifying the definition, that $|\sin \theta| \sin \theta$ is differentiable at $\theta=0$, and find the value of the derivative.

You may assume that $\lim _{\theta \rightarrow 0} \sin \theta=0$ and $\lim _{\theta \rightarrow 0}(\sin \theta) / \theta=1$.
6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}\frac{x^{2}+4 x-12}{x^{2}-4} & \text { if } x \neq 2,-2 \\ 2 & \text { if } x=2 \\ 1 & \text { if } x=-2\end{cases}
$$

i) Prove, by verifying the definition, that $f(x)$ is differentiable at $x=2$, and find the value of the derivative.
ii) Prove that $f(x)$ is not differentiable at $x=-2$.
7. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)=\left\{\begin{array}{ll}
2 x & \text { if } x \geq 1 \\
x^{2}+1 & \text { if } x<1
\end{array} .\right.
$$

By verifying the definition prove that f is differentiable at $x=1$ and find the value of the derivative.
8. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}x^{2}-x & \text { for } x \leq 1 \\ x^{3}-1 & \text { for } x>1\end{cases}
$$

Prove that f is not differentiable at $x=1$.
(It is quickly seen that the one-sided limits of f at $x=1$ are both 0 , the value of $f(0)$, and so f is continuous at $x=1$. Thus we have another example that continuous does not imply differentiable.)
9. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)=\left\{\begin{array}{cc}
x^{2} & \text { if } x \geq 0 \\
-x^{2} & \text { if } x<0
\end{array}\right.
$$

i) Use the definition to show that f is differentiable at $x=0$ and find the value of $f^{\prime}(0)$.
ii) Find $f^{\prime}(x)$ for all $x \in \mathbb{R}$.
iii) Is the derivative f^{\prime} differentiable on \mathbb{R} ? Give your reasons.

